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Abstract. The process of thermal Marangoni drying is considered, which has been recently proposed for use in
semiconductor production. The process allows ultraclean drying of semiconductor wafer surfaces at the end of a
sequence of wet operations. A theoretical model is presented, which incorporates the movement of a thin liquid
film on the semiconductor surface, heat exchange between the semiconductor and outer medium, and the water
flow below the meniscus. In the frame of this model, the problem is solved using a combination of lubrication ap-
proximation, one-dimensional heat transfer analysis, and spectral-element solution of the two-dimensional Stokes
equations. Several examples are given to show how the model can be used to evaluate the efficiency of drying.
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1. Introduction

The final stage of semiconductor processing includes a sequence of wet processes, the last
one being rinsing in deionized water. After that, the semiconductor plate, called hereafter
the wafer, has to be removed from the water in such a way that no water patches remain
on the surface. This is extremely important because the patches can leave behind spots of
pollution after the water evaporates. For the gravitational force alone to be able to fully strip
the remaining film of water from the wafer surface, the withdrawal velocity of wafer must be
very small, which reduces considerably the total production rate.

A novel technique for the rapid drying of the semiconductor surface that is becoming
increasingly widespread (see e.g. [1–3]) during the last few years is Marangoni drying. This
technique employs the Marangoni effect due to the variation of the surface-tension coefficient
σ in the vicinity of the meniscus to increase the withdrawal velocity of wafers. In this particular
case, a vertical gradient of σ leads to an additional stripping force acting on the remaining film
of water. The experimental and theoretical studies [1–3] as well as experience of industrial
application have shown that a sufficient surface-tension gradient can be achieved when a water
soluble organic vapor (usually isopropyl alcohol – IPA) is added to the atmosphere. Drying
devices based on this effect are successfully replacing the conventional techniques such as
spin drying and vapor drying with boiling IPA.
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The mechanism of Marangoni drying with IPA is relatively well understood (see e.g. [1],
[3]). IPA acts like a surfactant. When adsorbed into water it lowers the surface tension. The
dependence can be approximated by a linear relationship, namely

σ = σ0 − γcc, (1)

where c is the surfactant concentration at the surface and γc > 0 is a coefficient of surface-
tension variation. Thus, the principal part of the Marangoni-drying technique is the creation of
a vertical gradient of the surfactant concentration c. As discussed in detail in [3], this gradient
is readily established at the water surface near the contact point between the entrained film and
the meniscus. The surfactant diffuses quickly into the thin entrainment film above the contact
point, whereas the diffusion below this point is lowered as the water layer becomes thicker.

As we already mentioned, Marangoni drying based on surface-tension variation due to
variation in surfactant concentration is an established technique which is becoming increas-
ingly widespread. In the present paper we address another type of Marangoni drying based on
the dependence of surface tension on temperature (see [4]). Similar to (1) we can approximate
the dependence by a linear function

σ = σ0 − γ(T − T0), (2)

where T is the temperature at the surface and σ0 is the surface tension corresponding to the
reference temperature T0. Obviously, the main goal of the drying technique now becomes the
creation of a strong vertical temperature gradient at the surface of the entrained film.

We analyze a typical device for thermal Marangoni drying. The main goal is to create a
simplified theoretical model, which can serve as a tool for a multi-parametric feasibility study
of the process. The model has to provide an estimate of the asymptotic thickness h0 of the
water film as a function of macroscopic parameters of the system. Furthermore, the model
has to be simple enough to make possible its repeated use for hundreds of combinations of
these parameters. It has to be stressed that a direct numerical simulation of the whole system
is impossible because of the extreme difference of typical length scales, such as the thickness
of the remaining film h0 ∼ 2 µm and the gap width D0 ∼2 mm. These reasons dictate our
approach to modeling as discussed in Section 2.

Our paper is the first to give a complete theoretical description of the process of thermal
Marangoni drying. We consider all the important physical processes in the system dividing
them into three groups in such a way that each group can be analysed separately using the
most suitable modeling technique. It has to be stressed that the coupling between different
processes is retained in the model in the reduced form of a combination of several input–output
parameters.

The system under consideration and the model are described in Section 2. Some results are
shown in Section 3 and the conclusions are given in Section 4.

2. System under consideration and theoretical model

2.1. SYSTEM UNDER CONSIDERATION

We consider a system that, apart from the simplifications discussed below, corresponds to the
typical Marangoni-drying facility used in semiconductor processing. A set of equally spaced,
vertically positioned plates of a semiconducting material (wafers) is slowly withdrawn from
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Figure 1. Marangoni drying facility: sketch of the two-dimensional model.

a tank of deionized water (see Figure 1). The typical wafer is usually a disk of thickness
Dw = 1 mm and diameter 200 mm. The withdrawal velocity Vw varies from 1 mm s−1 to
4 mm s−1. The distance between the wafers, which is determined by the design of the carrier,
is usually Do = 3mm.

The drying facility considered here was initially designed for the surfactant-based Marangoni-
drying process. The working space above the water was closed by a transparent lid and filled
with a mixture of nitrogen and isopropyl alcohol (IPA). Apart from facilitating the Marangoni
effect, such an ultradry atmosphere provided for intensive water evaporation at the surface
of the entrainment film. The permanent flow of the gas mixture was maintained while it was
being pumped through the holes in the lid and allowed it to run out through the openings
located in lateral walls near the water surface.

The same facility is used for thermal Marangoni drying considered in the present paper.
The only difference is that the gas pumped under the lid is now pure ultradry nitrogen. There
are many ways to create the necessary vertical temperature gradient required for maintaining
the Marangoni force. In this paper, we consider two of them, both exploiting high thermal
conductivity of the semiconductor and low (room) temperature of water in the tank:

(i) Gas Heating – nitrogen is preheated to high temperature and then pumped at a high flow
rate into the working space. This results in a considerable temperature difference between
the upper end of the wafer, which is heated due to the contact with nitrogen, and its lower
end, which is cooled by water.

(ii) Contact Heating – instead of employing heat exchange with hot nitrogen one can heat
the upper end of wafer directly with the help of a contact heater.
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Figure 2. Principal physical mechanism of thermal Marangoni drying.

2.2. PHYSICAL MECHANISM OF THERMAL MARANGONI DRYING

The principal scheme of the complex physical mechanism of thermal Marangoni drying is
given in Figure 2. The top part of the wafer is heated through heat exchange with the hot
nitrogen pumped into the working space or through contact heating, while its bottom part is
maintained at a much lower temperature due to contact with abundantly supplied cold water.
The resulting vertical gradient of wafer temperature is a key phenomenon for the process of
drying. It causes a nonuniform temperature distribution at the surface of the water drawn by
the wafer and, thus, the Marangoni force. If the surface-temperature gradient is large enough,
the ‘stripping’ action of the Marangoni force in the entrainment region can lead to considerable
reduction of the asymptotic thickness h0 of the remaining film.

For the drying process to be successful, h0 has to be brought down to a threshold value,
at which the evaporation and molecular forces are able to complete the ‘patch-less’ drying.
The evaluation of this threshold is beyond the scope of this paper. Its value depends on the
temperature and humidity of the atmosphere outside the film.

One can see in Figure 2 that the physical mechanism of thermal Marangoni drying is
not limited to a straightforward scheme as outlined above. Essential complexity is added by
intensive convective and conductive heat transfer between nitrogen, wafer, and water, all of
them having different temperature distributions.

Another phenomenon to be considered is the water flow below the meniscus. The flow is
driven by the Marangoni force at the surface and by the withdrawal motion of the wafer. The
impact of the flow on the drying process is twofold. First, it introduces horizontal convective
heat transfer, and, thus, causes redistribution of the surface temperature. Second, the flow pat-
tern should furnish immediate removal of the particles washed off at the wafer wall. Therefore,
development of any recirculation or stagnation zones near the wall is highly undesirable.

It has to be noted that one phenomenon, essential for the heat redistribution in the system,
remains unaccounted for in our model. This is the flow of nitrogen in the gap between the
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wafers. As a justification, we note that the flow has a complex even if, probably, laminar
structure and, therefore, is difficult to simulate. On the other hand, the flow is predominantly
in the vertical direction, and its particular pattern has only a limited influence on the heat
exchange between the wafer and nitrogen.

2.3. MODELING APPROACH

The sketch of the problem as it appears in our model is given in Figure 1. An important
simplification is made – we neglect the dependence on a horizontal coordinate parallel to
the wafer surface and solve a two-dimensional problem. Another simplification is based on
the fact that the time scales of the physical processes governing the system behavior such
as the horizontal thermal diffusion time D2

o/κ or the time scale Do/V based on the typical
water velocity under the meniscus are much smaller than the typical time scale of the slow
motion of the wafers. For this reason and because of the small Reynolds number (see below
in this section), we adopt the quasi-static approximation and neglect the time-dependence of
the solution.

Because of symmetry considerations, only the part of the system between the symme-
try axes of a wafer and an adjacent gap is considered below. The x-axis is in the vertical
direction, and the y-axis is directed horizontally, normal to the wafer surface. The surface
y = 0 corresponds to the wafer wall. The origin of the x-axis is at the level of the lowest
point of the meniscus except for the solution in the entrainment and transition regions in
Section 2.5 where the origin is set to an imaginary contact point between these regions and
the meniscus. Important parameters are the wafer width Dw, the gap between wafers Do, and
the wafer-withdrawal velocity Vw.

The model relies essentially on several simplifying assumptions, each of them valid with a
very good degree of approximation in the case of the Marangoni-drying facility considered in
this paper.

First, very small values of the capillary number are typical for the system, i.e.

Ca ≡ Vµ

σ0
� 1. (3)

In (3), µ is the dynamic viscosity and σ0 is a mean value of the surface-tension coefficient
(corresponding to a mean value of the surface temperature). For a typical velocity V = Vw =
1 mm s−1 we have Ca ≈ 1·2×10−5.

Second, the typical thickness h0 of the rest film is small in comparison with the thickness
of the gap between the wafers and the typical length scale in the meniscus area, which is the
capillary length

�0 ≡
(

2σ0

gρ

)1/2

, (4)

where g and ρ are, respectively, gravitational acceleration and water density.
Such a separation between the ‘macroscale’ �0 and ‘microscale’ h0, as well as the smallness

of the capillary number, allows us to use the method of matched asymptotic expansions when
calculating the shape of the water free surface.

One more scale separation is between the typical horizontal and vertical scales of the
flow. The small aspect ratio of the problem (width/height ∼ 0·15) leads to the possibility
of neglecting the horizontal temperature variations in the wafer and the gap and obtaining
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vertical distributions of horizontally averaged temperature by use of a the one-dimensional
thermal analysis.

Next, an essential assumption is that both the macroscale and microscale Reynolds num-
bers are small,

Re�0 ≡ V �0

ν
� 1, Reh0 ≡ V h0

ν
� 1, (5)

where ν = µ/ρ is the kinematic viscosity of water.
For V = 1mm/s, and h0 = 2µm we have Re�0 ≈ 0·3 and Reh0 ≈ 2 × 10−3. Therefore, the

water flow can be approximately described by the Stokes equations

∇p = µ∇2U + ρg, (6)

∇ · U = 0. (7)

The convection-diffusion equation for the temperature field T (x, y) can be given as

U∇T = κ�T, (8)

where κ is the thermal diffusivity of water.
The velocity boundary condition at the wafer wall y = 0 is (cf. Figure 1)

U = Vwex at y = 0, (9)

and the conditions at the free surface y = h(x) are

n · Ŝ · n = σ K, τ · Ŝ · n = −dσ

ds
= γ

dT

ds
, n · u = 0, at y = h(x), (10)

where Ŝ is the total stress tensor, d/ds stands for the gradient along the surface, and n, τ,
and K are, respectively, the normal and tangential unit vectors to the free surface and its
curvature. The conditions (10) express the continuity of total stress and the stationarity of the
free surface. The boundary conditions for the temperature field are discussed in Section 2.6 .

Based on the assumptions listed above, we divide the solution into three parts, each al-
lowing a specific simplifying approach. They are the solution for the shape of the water free
surface and the thickness of the entrained film, analysis of thermal fluxes between the water,
wafer, and nitrogen, and simulation of the water flow and temperature distribution under the
meniscus. It has to be stressed that these processes can not be completely separated. They are
coupled with one another in a complex way through the temperature and velocity boundary
conditions. In our model, the coupling is reduced to several most important parameters. This
allows us to avoid the solution of the full problem involving widely separated length scales
and achieve the best possible approximation for each process.

The vertical temperature distributions are determined in Section 2.4 through the one-
dimensional thermal analysis.

The shape of free surface is evaluated in Section 2.5 using the lubrication approximation
in the entrainment region and static solution for the meniscus. The small value of the macro-
scopic Reynolds number implies that we can neglect the influence of the water flow on the
shape of the free surface. Another simplification is that, in Section 2.5, the temperature at the
surface is considered constant everywhere, except in the thin entrainment region adjacent to
the wafer.
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The numerical simulation of the water flow based on the Equations (6–8) is presented in
Section 2.6. By contrast to Section 2.5 we should take into account the temperature variance
along the meniscus, since it creates the Marangoni force. This can have a great impact on the
flow structure.

The coupling between the three separate parts of our analysis is as follows. The vertical
temperature distributions in the wafer and the gap Tw(x), To(x), as provided by the one-
dimensional thermal analysis, are used for defining the values of µ, σ0, and dσ/dx at the water
surface. In a given geometry, these values completely determine the shape of the surface and
the asymptotic thickness of the film h0. Another use of Tw(x), To(x) is that they give the
temperature boundary conditions for the water flow.

The free surface calculated in the framework of hydrostatic approximation is used as a
boundary of the water-flow domain.

It can be shown by a simple scaling analysis and has been confirmed by our simulations
that the influence of water flow on the vertical temperature distributions can be neglected. This
allows us to avoid an iterative procedure and perform the study of a given configuration in the
sequence:
(i) one-dimensional thermal analysis,
(ii) solution for the shape of free surface and entrained film,
(iii) simulation of the water flow.

We use everywhere the system of measurement units consisting of mm, g, s, and K for
length, mass, time, and temperature, respectively. An exception is the discussion in Section
2.5 which is based on a scaling analysis and, thus, requires a non-dimensional presentation.

2.4. ONE-DIMENSIONAL THERMAL ANALYSIS

In this section we derive a simple model which describes the processes of heat transfer be-
tween the wafer, water, and nitrogen and allows us to evaluate temperature distributions in
these media. The model is based on the approach routinely used in engineering to analyze the
processes of heat transfer in multi-layer systems. For our purpose, information on distributions
in the vertical direction is of primary importance. Therefore, we make use of the small aspect
ratio typical for the problem and formulate a one-dimensional model for the heat exchange
processes in the water-wafer-nitrogen system.

We consider an idealized one-dimensional two-layer system consisting of a wafer and outer
medium extending in a vertical direction between the points xb < 0 (bottom) and xt > 0
(top). An illustration is presented in Figure 3. The values of xb and xt can vary but their
difference remains equal to the size of the wafer (200 mm in our calculations), and the point
x = 0 always corresponds to the boundary between water and nitrogen. All the variables
are averaged in the horizontal direction so that only the x-dependence is retained. Tw(x) and
To(x) denote, respectively, the wafer temperature and the temperature of the outer medium. In
a similar manner, we use the subscripts w and o to distinguish between the material constants
of the wafer and the outer medium. Thermal conductivity, thermal diffusivity, density, and
specific heat at constant pressure are denoted, respectively, by λ, κ = λ/ρcp, ρ, and cp.

Another important parameter used in the model is Vo, the horizontally averaged vertical
velocity of outer medium. The velocity of water can be taken equal to the wafer velocity Vw
or set to zero. In either case, its value is typically very small and its influence on global heat
exchange considered in this section is negligible. On the other hand, the velocity of nitrogen
is very important, especially to the gas heating. We assume hereafter that the mean convective
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Figure 3. One-dimensional model for the heat exchange
in the system water-wafer-nitrogen.

Figure 4. Computational domain and grid for the calcu-
lations of the meniscus flow.

heat transport in the vertical direction produced by the nitrogen flow can be approximated as a
transport by a constant downward velocity Vo < 0. This assumption, the least justified among
those utilized here, is inevitable because the only alternative for providing a full account of
the influence of the nitrogen flow on heat exchange is the numerical solution of the full 2D
system of equations for the gas motion, which is beyond the scope of this paper.

The other two parameters are Tcold, the temperature of water at the lower end of wafer, and
Thot, the temperature at the upper end of the wafer. Thot has different meanings dependening
on the kind of heating applied. In the case of gas heating it denotes the nitrogen temperature
at x = xt , and in the case of contact heating it is the wafer temperature itself at the top end.

The following thermal analysis incorporates simplifications based on certain physical prop-
erties of the materials under consideration. First, the thermal conductivity of semiconductor
material is much higher than the thermal conductivity of water and nitrogen, i.e.

λw  λo. (11)

Further, the thermal diffusion time for semiconductor material D2
w/κw, is much smaller than

the typical time scale of the wafer motion. Therefore, the quasi-stationary approximation can
be adopted and the equations describing the diffusion and convection of heat in the system
and heat exchange between the wafer and outer medium can be given as

DwVw

2

dTw
dx

= κwDw

2

d2Tw

dx2
+ 2λo

ρwcpwDo

(To − Tw), (12a)
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DoVo

2

dTo
dx

= κoDo

2

d2Tw

dx2
− 2λo

ρocpoDo

(To − Tw). (12b)

In the equations, the terms on the left-hand side and first terms on the right-hand side
are the usual expressions for convection and diffusion of heat in the vertical direction. The
second terms on the right-hand side describe the heat exchange between the wafer and the
outer medium. Taking into account (11) and applying Newton’s cooling law, we approximate
the conductive horizontal heat flux per unit length as the averaged horizontal temperature
gradient in the gap (To − Tw)/(Do/2) multiplied by the thermal conductivity of the outer
medium λo. Convective heat flux in the horizontal direction is neglected, which corresponds
to the assumption of laminar, primarily vertical motion of nitrogen and water in the gap.

For the boundary conditions at the lower end x = xb we use Newton’s cooling law for the
wafer and a fixed temperature for the water

dTw
dx

(xb) = 1

δ

λo

λw
(Tw(xb)− To(xb)), To(xb) = Tcold. (13)

The value of the constant δ, which has the dimensions of length and stands for the unknown
thickness of temperature boundary layer, was arbitrarily set to 1 mm. It has to be noted that the
actual value of this constant is of negligible importance because the ratio of the heat transfer at
the wafer ends to the total heat exchange between the wafer and the outer medium described
by the second terms on the right-hand sides of (12a–12b) is very small (of the same order of
magnitude as the ratio wafer width / wafer height).

The boundary conditions at the upper end x = xt depend on the type of heating. For gas
heating we have

dTw
dx

(xt ) = −1

δ

λo

λw
(Tw(xt)− To(xt )), To(xt ) = Thot, (14)

whereas in the case of contact heating we require the fixed wafer temperature and zero heat
flux in nitrogen to obey

Tw(xt ) = Thot,
dTo
dx

(xt ) = 0. (15)

At the contact point x = 0 between water and nitrogen, the conditions of equal temperature
and equal vertical heat flux must be satisfied, which is expressed by

Twater(0) = Tnitrogen(0), λwater
dTo
dx

|x<0 = λnitrogen
dTo
dx

|x>0. (16)

The system (12–16) allows an analytical solution, which, however, contains many coeffi-
cients arising because of the matching of four separate solutions of the convection-diffusion
equation. Therefore, we employ a numerical solution. The differential equations are replaced
by their finite-difference approximations on the grid of 104 equally-spaced points xi and are
solved by means of the matrix version of the double-sweeping (Thomas) algorithm.

In spite of the great degree of simplification, the one-dimensional thermal model is a useful
tool for obtaining the data required by the other parts of the model. The vertical distribution
of wafer temperature Tw(x) at x < 0 is used as a temperature boundary condition for a water
flow under the meniscus. A very important parameter is the gradient of water temperature ∇Tc
at the contact point x = 0. This gradient is employed in (23) to evaluate the gradient τ0 of the
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surface-tension coefficient responsible for the Marangoni reduction of the rest film thickness
h0.

Another important parameter produced by the thermal analysis is the mean water temper-
ature at the meniscus, say Tc, necessary to evaluate the water surface-tension coefficient σ0,
viscosity µ, and density ρ. The mean surface values of these properties enter the solutions for
the shape of the meniscus and the entrainment region in Section 2.5 and for the water flow
in Section 2.6. There is a complication connected with the fact that the surface temperature
can be redistributed and, thus, Tc can be changed by the water flow. To avoid the iteration
procedure required for an exact solution of such a problem, we approximate the surface tem-
perature as Tc = (To(0) + Tw(0))/2. This approximation has been found to be reasonable in
our calculations. The calculations have also shown that the actual temperature variation along
the surface does not exceed 1 K.

2.5. MENISCUS AND ENTRAINMENT REGIONS

In this section, a method for defining the shape of the free surface of the water between the
moving wafers is discussed. We apply the model, which was first introduced by Landau and
Levich [5] and Bretherton [6] for the case with constant surface tension and developed later by
Wilson [7] and Thess and Boos [3] to include the variable surface tension due to the surfactant
or non-isothermal effects. The model was also extensively used to describe the flow in Hele-
Shaw cells (see e.g. [8], [9]). Only cursory description is provided below. A thorough analysis
can be found, for example, in [7] and [8].

Making use of the separation between the length scales h0 and �0 we divide the surface into
three regions. They are the meniscus region far from the wafer wall, the entrainment (remain-
ing film) region as x → ∞, and the transition region in between. The Stokes equations (6–7)
are solved separately in each region with corresponding boundary and matching conditions.

In the entrainment region, we take the advantage of slow vertical variation (∂/∂x � ∂/∂y)
and assume that the velocity field has only one non-zero component vx(y). Further, we assume
that the film thickness in the entrainment region is constant, i.e. h = h0. (This assumption can
be considered as a definition of the entrainment region.) The solution is trivial but incomplete
since the constant h0 is unknown. We discuss in this section how this constant, which is of
primary importance for the evaluation of drying efficiency, can be determined through the
solution for the free surface.

We take advantage of the small capillary number (3) and apply the method of asymptotic
expansions. The variables in the meniscus and transition regions are scaled, respectively, as

(x, y, h) = (�0X, �0Y, �0H), u = VwU , p = σ

�0
P, (17)

and

(x, y, h) = (
�0(Ca1/3X̄ +Xc), �0Ca2/3Ȳ , �0Ca2/3H̄

)
,

(ux, uy) = (VwŪx, VwCa1/3Ūy), p = σ

�0
P̄ , (18)

where capital letters are used to denote dimensionless variables and Xc is an unknown bound-
ary between the meniscus and transition regions.

In the leading (zero) order of approximation in Ca, the problem reduces to two ordinary
differential equations. In the meniscus region, the fluid flow has no effect on the shape of the
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free surface at this order of approximation. The shape is determined by a purely hydrostatic
balance between the pressure and surface tension. This is expressed by the equation

2X +K0 = HXX

(1 + (HX)2)3/2
, (19)

whereK0 is the curvature of the surface at the point X = 0, i.e. at the symmetry axis of the gap
between wafers. Equation (19) is a classical result [10, p.243] modified to suit our particular
geometry. Applying the boundary conditions

H(X) = D0/2�0 at X = 0, HX(X) → −∞ asX → 0,

we find the solution

H(X) = d −
[
X(2 −K0X −X2)

K0 +X

]1/2

+ A1/2
{
E(Q,L)− F(Q,L)

}
, (20)

where F andE are the elliptic integrals of the first and second kinds, respectively, andA,Q,L
are defined as

A = 1

2
[4 +K2

0 +K0(8 +K2
0 )

1/2],Q = arcsin

[(
AX

2(K0 +X)

)1/2
]
, L = [K0 − (8 +K2

0 )
1/2]2

[K0 + (8 +K2
0 )

1/2]2
.

The unknown constant K0 stands for the curvature of the surface at X = 0, i.e. at the
symmetry axis of the gap between wafers.

In the transition region we have

H̄ 3

3
H̄X̄X̄X̄ − M

2
(H̄ 2 − H̄ 2

0 )+ (H̄ − H̄0) = 0, (21)

where

M ≡ τ0�0

σ0Ca1/3 = τ0

σ
1/6
0 g1/2ρ1/2V 1/3µ1/3

(22)

gives the ratio between the Marangoni force and the viscous stress due to the moving wafer. In
(22), τ0 is the absolute dimensional value of the gradient of the surface-tension coefficient due
to the inhomogeneity of surface temperature. We approximate the derivative along the surface
by the x-derivative and employ the linear dependence of the surface tension coefficient on the
temperature (2) to obtain

τ0 ≈ −dσ

dx
= γ

dT

dx
, (23)

where dT /dx stands for the derivative of water surface temperature. In the thin transition
region adjacent to the wafer wall, this derivative can be approximated by the derivative of the
horizontally averaged wafer temperature, dTw/dx. The distribution Tw(x) is obtained through
the one-dimensional thermal analysis discussed in the previous section. It has been found that,
typically for the Marangoni devices considered in this paper, the gradient dTw/dx changes
only slightly with x in the transition region. Therefore, we make a further simplification and
substitute the value of γ dTw/dx at the contact point xc for the x-dependent τ0. Accordingly,
the parameter M is hereafter considered a constant.
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Note that, at M = 0, (21) reduces to the equation derived by Landau and Levich [5] for the
case without Marangoni effects.

The solution in the transition region must match the constant-thickness solution for the
entrainment film as X̄ → ∞. Corresponding conditions are

H̄ → H̄0, H̄X̄ → 0, H̄X̄X̄ → 0 as X̄ → ∞. (24)

Further, we apply the matching conditions at the boundary Xc between the meniscus and
transition regions (see [7] for more details)

H(Xc) = 0, HX(Xc) = 0, HXX(Xc) = H̄X̄X̄(X̄ → −∞). (25)

First, two conditions in combination with (20) allow us to define the constant K0 to give
Xc = [(K2

0 + 4)1/2 − K0]/2. The third condition in (25) completes the formulation of a
boundary-value problem for the transition region since we can apply

H̄X̄X̄ → (K2
0 + 4)1/2 as X̄ → −∞. (26)

The solution of (21) with the boundary conditions (24), (26) is found numerically by means
of the shooting method. First, we choose the starting point X̄ini so that it provides a negligibly
small second term in the asymptotic solution of Equation (21):

H̄ = H̄0 + exp[−(3 − 3MH̄0)
1/3X̄H̄0

−1] as X̄ → ∞. (27)

The calculations start with an arbitrary initial value of the film thickness H̄0. The Runge-
Kutta marching technique is applied to solve (21). The solution is calculated in the direction
of decreasing X̄ until H̄ becomes larger than a prescribed limit value and H̄X̄X̄ converges to
a constant a(H̄0). We apply a standard shooting procedure, repeating the numerical solution
with different values of H̄0 to find the value corresponding to a(H̄0) = (K2

0 + 4)1/2.
As a result, the remaining film thickness H̄0 can be found as a function of the parameter

M. At M = 0, the Landau-Levich result [5] is recovered. At M > 0, the thickness de-
creases monotonically with M, which is obviously a manifestation of the positive effect of the
Marangoni force we are seeking. The properties τ0, σ0, ρ, and µ that determine the value ofM
are functions of the temperature distributions. Hence, the thermal model described in Section
2.4 provides the possibility of evaluating M and h0 as functions of the external parameters of
the system, such as Thot, Vw, or Vo. One interesting result found in our simulations is that two
effects are of considerable importance for the increase of the Marangoni number and, thus,
for the ultimate effect of thermal Marangoni drying. The first of these is the growth of the
surface-tension gradient τ0 due to the growth of dTw/dx. The second effect is the decrease of
the viscosity µ through the growth of the temperatures Tw(x) and To(x) at the contact point
x = 0.

2.6. FLOW UNDER MENISCUS

In this section, we discuss the numerical solution for the water flow and temperature distribu-
tion in the area under the meniscus. As in Section 2.5 we take an advantage of small Reynolds
number and apply Equations (6–8) to describe the flow. We restrict our considerations to the
area immediately under the meniscus (less than 3Do below the surface) and do not take into
account the complications arising when the wafer is almost completely pulled out of the water
and the length of its part immersed in water is comparable with the length of the domain
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under consideration. Therefore, the assumptions of stationary flow and of infinite length of
wafer adopted in Section 2.5 can be retained.

It is convenient to use the stream function-vorticity formulation of the Stokes equation.
The stream function + is defined by

Ux = ∂+

∂y
Uy = −∂+

∂x

so that the incompressibility condition (7) is automatically satisfied. It is easy to see that

�+ = −ω, (28)

where ω is the transverse vorticity component

ω = ∂Uy

∂x
− ∂Ux

∂y
. (29)

Applying the curl-operator to the Stokes equations, we obtain the equation

�ω = 0. (30)

The convection-diffusion equation for the temperature field T (x, y) is given by (8).
The problem is solved in the domain ABCD (see Figure 4) bounded by the meniscus

surface, wafer wall, symmetry axis, and an artificial inflow-outflow boundary. The shape of
the free surface CD is found in Section 2.5 by the static approximation and is given by (20).
A fictitious inflow-outflow boundary AB is chosen far enough from the upper surface so that
it does not affect the solution in the area adjacent to the meniscus.

Boundary conditions closing the problem are the following:
At the symmetry axis [AD] we have:

+ = 0, ω = 0, and
∂T

∂y
= 0.

At the free surface [CD], the conditions

+ = 0 and − µω = µ
∂Uτ

∂n
= ∂σ

∂s
= −γ

∂T

∂s

are valid, where n and s are the normal and tangential coordinates, and Uτ is the tangential
velocity component. To impose the temperature boundary condition at the free surface we
recall that the thermal conductivity of water is much higher than the thermal conductivity of
nitrogen and apply Newton’s cooling law

λwater
∂T

∂n
= −λnitrogen(T − Tnitrogen)

1

δ
,

where Tnitrogen is the temperature at the surface obtained using the one-dimensional thermal
analysis. The thickness of a temperature boundary layer of nitrogen above the surface is set
arbitrarily to 1 mm. A more accurate value could be obtained from the solution for the flow
of nitrogen, which is beyond the scope of the present paper. As a justification, we invoke
the results of the one-dimensional thermal analysis which give this order of magnitude for δ

estimated as a thickness of the region of strong gradient of To(x) at x → 0+.
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At the moving wafer wall [BC] we have

+ = 0.

Here we suppose that the outflow rate through the entrainment film is negligible. For vorticity
we adopt

ω = −∂2+

∂y2
(31)

and take into account the no-slip condition ∂+/∂y = Ux = Vw when calculating the second
derivative of +.

Various numerical approximations of the vorticity boundary condition (31) at a rigid wall
are known. We tested Tom’s condition, lower relaxation method (see [11]), and the condition

ω0 = 2

(y2 − y0)2 − (y1 − y0)2
[Vw(y2 − y1)++1 −+2], (32)

where subscripts denote the grid points numbered with the distance to the wall. Numerical
experiments have shown that (32) provides the scheme with the best stability properties in the
case of our problem.

Employing the fact that the thermal conductivity of semiconductor is much higher than that
of water, we reduce the temperature boundary conditions at the wafer wall to T = Tw and use
the results of the one-dimensional thermal analysis discussed above for the wafer temperature
distribution Tw(x).

The right choice of the inflow boundary conditions at [AB] is very important. For the
velocity field we suppose that x-derivatives are negligible in comparison with y-derivatives.
In this case one can use

∂+

∂x
= ∂ω

∂x
= 0 at [AB]. (33)

An alternative is to prescribe the polynomial expression for + (the polynomial of 3rd degree
satisfying ∂2+/∂y2 = 0 and boundary conditions at A and B) and use ω = −�+ for the
vorticity. Test calculations have shown that both formulations are equally stable and converge
to the same final solution.

For the temperature we assume independence of the y-coordinate and use T = Tw at [AB],
where Tw is the wafer temperature at the same x. As can be seen in the examples of velocity
and temperature fields presented in the next section , there is an obvious contradiction between
such a boundary condition and the nature of the solution itself. To check the possible influ-
ence of this boundary condition on the solution, we performed several calculations with the
parameter sets differing only by the distance |AD|. It was found that the flow and temperature
distributions in the meniscus area are virtually unaffected by the inflow boundary condition as
soon as the distance |AD| exceeds the gap size Do.

The system of Poisson equations (28–30), (8), with the corresponding boundary conditions
is solved by use of an iterative procedure which is facilitated considerably if we introduce a
fictitious time t and reformulate the problem as that for a non-stationary flow. Each iteration
can be then formulated as

ωn+1 − ωn

�t
= �ωn+1,

T n+1 − T n

�t
= κ�T n+1 − V n∇T n,�+n+1 = −ωn+1.
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The time step �t is of importance for stability properties only and is taken between 0·001 and
0·01 in the calculations.

To solve the Equations (34) we apply the method of conforming structured spectral el-
ements [12] that combines the geometrical flexibility of finite-element methods with expo-
nential convergence of a spectral approximation. A detailed description of the method can be
found, for example, in [13].

The solution domain was discretized by a grid of 4 × 4 spectral elements with 5 × 5 test
functions in each element (see Figure 4). That gives a total of 400 nodal points. The size of
elements adjacent to the wafer wall and to the free surface was decreased considerably in
comparison with the other elements in order to ensure concentration of the grid points in the
regions of largest velocity and temperature gradients.

Certain numerical problems arise because the solution (20) for the shape of free surface
has a singular peak at the point given as point C in Figure 4. In principle, the vorticity must be
infinite at this point. Numerically, this leads to an instability when ω becomes too large in the
vicinity. There are different ways to treat this problem. The simplest one that is also suitable
for our problem is to change the geometry slightly and correct the form of the free surface
x = f (y) (f is a reciprocal function to h(x) used in Section 2.5) at point C (corresponding to
y = y0), making the peak not so “sharp”. Two procedures are used.

Correction 1: f
′
(y0) is set to f

′
(y1) and f (y0) to the linear interpolation

f (y1)+ (f (y1)− f (y2))
(y0 − y1)

(y1 − y2)
[Vw(y2 − y1)++1 −+2], (34)

Correction 2: f
′
(y0) is set to zero. Accordingly, f (y0) = f (y1).

We have found that these corrections only affect the velocity field in the flow region in the
immediate vicinity of C and, therefore, are of negligible importance for the temperature distri-
bution. Moreover, the difference between the velocity fields obtained with different correction
procedures is very small. Correction 2 is preferable because it provides faster convergence of
the solution.

3. Sample calculations

Extensive calculations were performed to study the influence of different operating parameters
on the efficiency of thermal Marangoni drying. In this paper we present two sample calcula-
tions, which demonstrate the ability of our model to capture the essential processes of heat
and mass transfer in the system.

Both examples deal with the technique that employs gas heating. It has to be noted that,
even though contact heating has proved to be, in general, more efficient, the gas-heating
method remains preferable from a technological point of view. The reason is that gas-heating
competely eliminates the problem of possible damage to the wafer due to contact.

The following hypothetical values of parameters were chosen in both these calculations
(see Figures 1 and 3 for notation): Tcold = 295 K, Thot = 345 K, Dw = 1 mm, Do = 3
mm, Vw = 1 mm s−1, xt − xb = 200 mm. The different parameters were the position of
wafer relative to the water surface as defined by the coordinates xt and xb and the horizontally
averaged vertical velocity of nitrogen Vo. Our simulations have shown that the influence of
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Figure 5. Sample results of the one-dimensional thermal analysis. Horizontally averaged temperature of wafer
(solid curves) and outer medium (water at x < 0 and nitrogen at x > 0, shown as dashed curves) as functions of
the vertical coordinate x.

Figure 6. Isolines of streamfunction +, vorticity ω, and temperature T , and plot of surface temperature vs. vertical
coordinate x are shown for the Case I. For the isolines, positive levels are plotted as solid lines, negative levels
- as dashed lines. For stream function, positive (negative) values correspond to clockwise (counter-clockwise)
circulation.

xt and xb, except when they take their extreme values, is rather weak. On the other hand, the
nitrogen velocity Vo has been found to have the largest impact on the efficiency of drying. Vo
defines the intensity of pumping the nitrogen into the gap between wafers, which is decisive
for heating the upper part of the wafer and, thus, for creating a strong temperature gradient on
the water surface.
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Figure 7. Sample results of calculations of water flow under the meniscus. Solution for the Case II is plotted as in
Figure 6.

Hereafter we consider Case I corresponding to xb = −100 mm, xt = 100 mm and Vo =
−100 mm s−1 and Case II with xb = −150 mm, xt = 50 mm and Vo = −1000 mm s−1. The
results of the one-dimensional thermal analysis, i.e., the solutions to Equations (12a), (12b)
with respective boundary conditions are shown in Figure 5. The shape of the temperature
curves is determined to a large degree by the fact that the thermal condutivities of nitrogen,
water, and semiconductor material differ by orders of magnitude,

λnitrogen � λwater � λwafer.

The wafer acts as a kind of heat exchanger furnishing the effective heat transfer in the vertical
direction. The intensities of the horizontal heat fluxes, from nitrogen to wafer at x > 0 and
from wafer to water at x < 0 are defined, apart from the temperature differences, by the values
of λnitrogen and λwater. One can see in Figure 5 that λwater is high enough to allow an almost
perfect heat equilibrium between the wafer and water layers. On the other hand, the layer of
nitrogen, which has a thermal conductivity about twenty times lower than that of water, is not
able to produce an energy influx to the wafer competitive with the vertical heat flux in the
wafer itself and the convective heat transfer by the nitrogen vertical velocity Vo. As a result,
there is an essential difference between the mean temperatures of wafer and nitrogen.

Using the wafer temperature at the contact point Tc(0) and its vertical gradient ∇Tc(0) as
input parameters, we can apply the analysis of Section 2.5 and find the shape of the meniscus
and the solution for the entrainment and transition regions. After calculating the asymptotic
thickness h0 of the remaining film, we evaluate the efficiency of thermal Marangoni drying
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as the ratio of h0 to the thickness obtained in the system kept at a constant temperature
295 K (0·95 µm for the configuration considered here). For Case I and Case II this ratio
is, respectively, 0·98 and 0·66. Two remarks concerning this reduction of h0 are in order. First,
only a part of the reduction owes its existence to the action of the Marangoni force. The other,
non-negligible part is due to the fact that the water viscosity decreases considerably (down to
50%) with the increasing temperature at the surface. Second, we do not take into account the
evaporation at the surface of the remaining film, which can be quite intensive at temperatures
like those shown in Figure 5 for Case II.

Figures 6 and 7 show the velocity and temperature fields calculated for Cases I and II by
means of the numerical procedure of Section 2.6. Apart from a peculiarity discussed below,
the flow patterns are quite reasonable. The flow in the meniscus area created by the joint
action of the Marangoni force and wafer movement consists primarily of the circulation in
the clockwise direction. The cold fluid is driven upwards along the wall of the wafer, heated
due to contact with the wafer and the hot nitrogen, and flows downwards along the symmetry
axis. The strongest vorticity is concentrated around the contact point between the wafer and
the meniscus.

A striking feature of the velocity field shown in Figure 7 is the large circulation zone near
the meniscus surface (note that the main circulation still reaches the surface as a thin stripe
near the wafer wall). Such recirculation is typical for cases when hot nitrogen is pumped
deeply into the gap between wafers. The reason is that the temperature of nitrogen at the
meniscus surface is very high, much higher than that of the wafer cooled by the water (cf.
Figure 5, Case II). This results in a considerable heat flux into the water, which creates a
surface temperature profile growing with the distance to wafer and, thus, a Marangoni force
directed from the symmetry axis to the wafer. Even if this force is rather weak, it can reverse
the very slow flow caused by the wafer motion. This flow development is undesirable, because
the particles to be removed from the wafer wall are not carried away effectively. Some of them
stay close to the wall.

4. Concluding remarks

In this paper we have formulated and tested a theoretical model for the technological process
of thermal Marangoni drying applied in the processing of semiconductor materials. The model
has proved to be able to capture the main mechanisms acting in the system and produce
estimates useful for engineering applications. Comparison with experimental results, details
of which are proprietary information and can not be given here, shows good agreement.

An important feature of our work is that we do not try to study the different physical
processes separately. Instead, we integrate the diversified physical models using a set of input-
output parameters and consider the whole system starting with the operating parameters and
concluding with estimates for the efficiency of drying and the velocity and temperature fields.

The questions of technical feasibility of thermal Marangoni drying and of the impact of
different parameters on the efficiency are not addressed in the present paper. The examples
considered in Section 3 allow the conclusion that the thermal Marangoni effect does indeed
work. We can therefore hope that a drying device based upon this effect may be feasible with
an optimum choice of operating parameters.
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